
[Patil, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[357]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY
Design and Implementation of Intrusion Detection System (Ids) Sensor Deployment

Mr.Patil Mahesh A.*, Prof: Y. M. Patil

* Research Scholar in Electronics And Telecommunication Engg. Shivaji University Kolhapur(MS),

India

Professor in Electronics Eng Dept.,K.I.T.College Of Engg. Shivaji University Kolhapur(MS), India

mahesh.patil37@gmail.com

Abstract
Network intrusion detection systems provide proactive defense against security threats by detecting and

blocking attack-related traffic. This task can be highly complex, and therefore, software-based network intrusion

detection systems have difficulty in handling high speed links. This paper describes the design and implementation of

a high-performance network intrusion detection system that combines the use of software-based network intrusion

detection sensors deployment. In large network environments multiple intrusion detection sensors are needed to

adequately monitor network traffic. However, deploying and managing additional sensors on a large network can be

a demanding task, and organizations have to balance their desire for detecting intrusions throughout their network

with financial and staffing limitations. This paper investigates how intrusion detection system (IDS) sensors should

best be placed on a network when there are several competing evaluation criteria. This is a computationally difficult

problem and we show how Multi-Objective Genetic Algorithms provide an excellent means of searching for optimal

placement

Keywords: Network intrusion detection systems (NIDSes), multi-criteria optimization, Intrusion Detection System

(IDS) sensors, probe attack , Denial of Service(DOS) attack, Attack Graphs.

Introduction
The increasing importance of network

infrastructure and services along with the high cost

and difficulty of designing and enforcing end-system

security policies has resulted in growing interest in

complementary, network-level security mechanisms,

as provided by firewalls and network intrusion

detection and prevention systems. High-performance

firewalls are rather easy to scale up to current edge-

network speeds because their operation involves

relatively simple operations such as matching a set of

Access Control List-type policy rules against fixed-

size packet headers. Unlike firewalls, network

intrusion detection systems (NIDSes) are significantly

more complex and, as a result, are lagging behind

routers and firewalls in the technology curve.

Moreover, the function of NIDSes needs to be updated

with new detection components and heuristics, due to

the continuously evolving nature of network attacks.

Both complexity and the need for flexibility make it

hard to design high-performance NIDSes.

 In large network environments, particularly

those with many network segments and those with

multiple Internet access points, network

administrators have generally placed multiple IDS

sensors along the network perimeters, typically around

firewalls, or near the node to be protected, to monitor

network traffic. By deploying sensors on various

network segments, tune each of them to the traffic that

typically on that segment, which means identify and

locate suspicious activities more quickly. However,

the detection of intrusions in large volumes of data, in

the absence of semantic hints provided by prior

knowledge of the intrusion type, is fundamentally

limited by the low ratio of malicious events [2]. It is

not obvious that deploying IDS sensors in larger

numbers would improve detection quality –

diminishing returns are likely to be evident early.

Neither is it feasible to deploy more and more sensors

given the costs and the manual engagement required

to monitor for potential intrusions.

Determining where to place a set of sensors to create

cost effective intrusion detection is a difficult task.

There may be several evaluation criteria for

placements, seeking to maximize various desirable

properties (e.g. various attack detection rates), whilst

seeking to reduce undesirable properties (such as false

alarm rates as well as purchase, management, and

communications costs). Subtle tradeoffs may need to

be made between the properties; different placements

may have complementary strengths and weaknesses,

with neither placement being uniformly better than the

other. However, engineering regularly deals with such

http://www.ijesrt.com/
mahesh.patil37@gmail.com

[Patil, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[358]

difficult multi-criteria optimization problems and has

developed a powerful suite of technical tools to

facilitate the search for high performing solutions.

Relevance
 An IDS Sensor placement may be optimal for

the detection of one type of attack, but not for a second

type of attack. To find out a placement that gives good

chances of detecting each of several types of attack;

this may yield a different optimal placement. To

determine the “optimal” placement required a means

to evaluate a particular placement. In some cases, this

may be carried out with respect to statically assigned

information (e.g. location of firewalls and servers). In

others, it requires to simulate attacks and measure the

effectiveness of the placement.

Intrusion Detection System (IDS) sensors should best

is placed on a network when there are several

competing evaluation criteria. This is show how

Multi-Objective Genetic Algorithms provide an

excellent means of searching for optimal placements.

A cost-effective decision for multi-objective

optimization demonstrates the validity and potential of

the multi-objective approach to sensor placement

trade-offs and provide incremental placement options.

The work presented is a deliberate attempt to use GA

and MOO techniques to assist network administrators

to choose IDS sensor placement that effectively

satisfies multiple criteria. A multi-objective genetic

algorithm (MOGA) can be harnessed to address the

sensor placement problem. The placement strategies

generated, although simple, are typical places that

network administrators would likely deploy IDS

sensors.

Fig 1 : IDS Sensor placement

Design and implementation
Performance: The primary metric of interest in the

design of a NIDS is throughput. That is, to be able to

operate at network speeds of at least 1 Gbit/s without

packet losses, so as to detect any attempted attack.

Therefore, the system must be capable of analyzing all

the incoming traffic under the most stringent

conditions. Network intrusion detection systems

(NIDSes) based on commodity PCs are able to

monitor at speeds much lower than 1Gbit/s2,5. This

necessitates the use of a distributed design with several

intrusion detection sensors operating in parallel and

supported by a load balancing traffic splitter. At the

same time, we want to minimize cost and use as few

resources as possible. We also want to minimize the

number of sensors needed. A key focus of our work is

therefore on how to exploit the processing capacity on

the IDS to reduce the load of the sensors. A second

important performance goal is minimizing the latency

induced by the NIDS. There is a direct relationship

between latency introduced by a networking device

and the maximum throughput of TCP flows. If the

NIDS will be used at the boundary between an

enterprise network and the Internet, latencies in the

order of a few milliseconds may be tolerable. If the

NIDS is deployed internally, and the network needs to

support high-bandwidth local services (such as file

sharing, etc.) the latency requirements are even more

stringent. Particularly, there is a critical value for the

http://www.ijesrt.com/

[Patil, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[359]

round trip time (RTT) of a packet in each network. If

the latency is below this critical value, TCP throughput

is unaffected -- it is the line speed of the underlying

network which becomes the bottleneck -- above this

critical value, however, TCP throughput is Negatively

impacted. The critical value for RTT in a network

supporting Gigabit speeds is 0.5 milliseconds. Thus, if

we want the throughput of TCP to be unaffected, we

must ensure that the latency imposed by our NIDS is

less than 0.5 milliseconds. However, Gigabit Ethernet

links will rarely carry only a single TCP connection.

Rather, a Gigabit Ethernet link supports hundreds, if

not thousands of TCP connections, and this

multiplexing mitigates the impact of latency on the

overall throughput of the link.

Fig : 2 Architecture of IDS Deployment

To impose latency greater than 0.5 milliseconds

without affecting the throughput of a link due to the

high number of TCP connections.

Flexibility and Scalability: A NIDS needs to be

flexible and scalable, both for scaling up to higher link

speeds and more expensive detection functions, as

well as for updating the detection heuristics. If the

protection of a faster link or a more fine-grained

detection is required, it would be desirable to reuse as

much as possible of the existing hardware. Clearly,

this property does not hold for ASIC-based NIPSes.

However, it is remarkable that almost all NIPS

providers ignore this dimension. Furthermore, a

prerequisite of flexibility is simplicity as extending a

complex system may be hard and error-prone. It is

therefore desirable for the hard-to-program elements

of our system to be as generic as possible.

A. Architecture

Fig. 2 is composed of a customized load balancing

splitter and a number of contentbased network

intrusion detection sensors connected with the splitter

(Figure 2). The splitter is the entry and exit point of the

traffic that runs through the system. The basic task of

the splitter is to evenly distribute the traffic across the

sensors and to transmit the non-attack packets back to

their destination. The sensors are responsible for the

heavy task of inspecting the traffic for intrusion

attempts. They maintain the required information for

recognizing all the malicious traffic and deciding

whether to forward or drop the packet. For every input

packet, the splitter computes which sensor will be

responsible to analyze this packet. Then, it forwards

the packet to this sensor for inspection. The sensor

searches for known attack patterns contained in the

packet. If a pattern is found, then the packet is blocked,

otherwise the packet is forwarded back to the splitter.

http://www.ijesrt.com/

[Patil, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[360]

The splitter receives the analyzed packet and transmits

it to its destination.

Additionally, it supports plug-ins that implement

operations necessary to improve the performance of

the system. A plug-in has two parts, one running on

the splitter and one running on the sensors. These two

parts cooperate in order to accomplish their task. In the

context of this work we have designed a plug-in for

attempts to minimize the cost of sending a packet from

a sensor to the splitter.

Splitter: The functionality of the splitter can be

divided into the basic operations and the plug-ins that

provide adequate operations to boost performance.

The basic part of the splitter integrates the

functionality of a load balancer -- it is responsible for

distributing the incoming traffic across the output

interfaces (ports). However, it differs from a common

load balancer in that it must be flow-preserving, that

is, all the packets belonging to the same flow must be

forwarded to the same output interface.

In case of TCP/UDP traffic, we define a flow to consist

of all the traffic of a TCP or UDP connection.

Otherwise, flow consists of all the traffic originating

from a particular IP address and destined to a

particular IP address. Regarding load balancing, there

are two possible approaches that we could use: stateful

load balancing that requires from the system to hold

state and hash based load balancing, that experiences

greater load imbalances. For the purposes of this

paper, we assume that load imbalances are tolerable

and use the simpler hash-based method. The input of

the hash function is composed of the source and

destination IP addresses of the packet.

Sensor: A sensor is a commodity PC that runs a

modified popular NIDS and is connected with the

splitter (through an Ethernet connection). A sensor

receives traffic from the splitter and analyzes it for

possible known attacks. In case that an attack is found,

it notifies the splitter to block the offending packet(s),

otherwise it informs the splitter that the packet(s)

should be forwarded. A sensor maintains state about

the traffic it analyzes in order to operate

Correctly. The maintained state includes the active

TCP connections it has captured in the near past, TCP

connections tagged as offending, fragmented packets

and statistics about the connections per second to

TCP/UDP destination ports.

B. Proposed Methodology:

The proposed scheme is outlined as follows,

 Considering the whole network consists of

180 nodes, where node 0 represents the outside world,

nodes 1 to 19 are the routers interconnecting various

parts of the network, nodes 20 to 39 are servers

offering valuable services to users and therefore

critical assets that need to be protected, and nodes 40

to 180 are ordinary clients some of which may be

compromised by intruders to attack critical assets.

http://www.ijesrt.com/

[Patil, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[361]

 Probe attack

 A real intrusive behavior to analyze how such

behaviors could be efficiently detected by the

proposed approach. The intrusive behavior is to do

with probing and information gathering, the purpose

of which is to assess a potential target’s weaknesses

and vulnerabilities [9]. An intruder may strive to detect

active hosts and networks that are reachable and the

services they are running that could be successfully

exploited. Detecting and preventing such probes

therefore is important both to inhibit exposure of

information and prevent attacks that follow.

 A probe attack scenario where various servers

are probed from the outside node and inside from

clients, hence the simulation consists of both external

and internal attacks. An intruder may subvert a node

in any of the client subnets to probe any of the servers.

Client nodes also attempts a probe on neighbors client

node. A possible number of probe attack are injected.

In order to investigate how the false alarms may

influence sensor placement strategy, simulation

consist not only a number of attacks but also

background network traffic. If the testing data set is a

very representative sample of the operation

environment, can use the metrics in the testing data to

approximate the real world situation. In this

experimental framework assume all sensors are

identical and configured to exhibit a detection rate of

95% and a false positive rate of 0.1%.Expected

monitoring costs for the network are dependant on the

load of the traffic at a specific location in the network:

the busier the location, the higher the levels of activity

monitored (including false alarms), and therefore

bigger the effort.

 In the experiments, expected monitoring

costs to reflect an operational network in the real

world: routers nodes serving at the heart of the

network are assigned a cost relatively much higher.

Router nodes are assigned a cost with down the

hierarchy, client nodes have minimum cost .

Fitness Measurement

The fitness of a sensor placement is

determined by its ability to satisfy four objectives: -

number of sensors, detection rate, false alarm rate and

monitoring cost.

1.To minimize the number of sensors,

2.To maximize the detection rate of a sensor

placement. It is relationship between

number of distinct attacks that have been detected and

the number of all simulated attacks which have

injected in the data set (i.e. probe attacks).

3.To minimize the false alarm rate of a sensor

placement. It is relationship between the number of

false alarms that are raised by the sensors and all

alerts that are reported by the sensors. All alerts is a

sum of the number of detected attacks (true alarms)

and the number of false alarms.

4. To minimize the total monitoring cost.

3. Sensor Placement Representation

 A feasible sensor placement is represented by n

(i.e. number of network nodes) bits.

1. To investigate the relations between the number of

sensors and detection quality (in terms of the pair of

detection rate and false alarm rate), and search for

placement given constraints on the number of sensors

available to deploy.

2.Designed to determine the minimum monitoring cost

needed to detect certain amount of attacks, and the

criteria of amount of sensors is omitted. Nevertheless,

given a reasonable budget, it is possible to effectively

detect a majority of the attacks if the sensors are

optimally placed.

3.Multi-optimization technique can be a very powerful

tool to help to find cost-effective sensor placements.

Simulation and result
We are constructing attack graphs for sensor

placement[6].Attack graphs predict the various

possible ways of penetrating a network to reach

critical assets. We then place IDS sensor to cover all

these paths, using the fewest numbers of sensor.

 We characterize expected monitoring costs for

the network. We restrict the costs to a range of values

1 to 10 to express relative monitoring costs for

different locations on a network. Router nodes 1 and 2

are assigned a cost of 8,router nodes 3,4,5 and 9 are

assigned cost of 7,router nodes 8 and 10 are assigned

cost of 6,router nodes 6,11,15 are assigned cost of

5.We assign a flat cost of 4 for all the other subnet

router nodes.

 We are designed different tcl script through

NS2 simulator(For here showing

v3.tcl,v4.tcl,v5.tcl,normal1.tcl).For attack Simulation

Denial of Service(DOS) attack(eg.Normal1.tcl) is

simulated for attack penetration. For probing of attack

Worm attack (eg.Worm.tcl) is simulated.

http://www.ijesrt.com/

[Patil, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[362]

1. Attack Graphs:

Fig:V3.tcl Attacker Node 130client On Sever Node22

Fig:V4.tcl Attacker Node45 client On Server Node35

Fig:V5.tclAttacker Node80client On Server Node120

http://www.ijesrt.com/

[Patil, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[363]

2.Sensor Placement Representation:

3.Xgraph for Optimum Solution

Xgraph for v3.tcl,v4.tcl,v5.tcl,normal1.tcl,worm.tcl

Example No of sensor Detection rate Placement option Monitoring

cost

Energy

consumed

V3.tcl 4

88.98% NODES

1,3,12,19

23 300

V4.tcl 4

91% NODES

3,8,9,15

25 400

V5.tcl 5

94% NODES

1,3,12,18,19

27 520

Worm11.tcl -

76% - - 510

Normal1.tcl -

72% - - 510

http://www.ijesrt.com/

[Patil, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[364]

4.Fttness Measurement

Through multi-objective optimization analysis we

find out three placement option of IDS sensor

placement.

Summary and concluding remarks
We have presented the design of a high-

performance Network Intrusion Prevention System

(NIDS). The number of sensors implemented on

commodity PCs. We have focused on one method for

boosting system performance by optimizing the

coordination between the load balancer and the

sensors. The result is a 45% improvement in

performance, allowing the system to reach speeds of

at least 1 Gbit/s. There are several directions that we

are currently pursuing. First, we are re-examining the

structure of the sensor software. We try to move part

of the protocol processing functionality. Second, we

are looking at ways for building a 10 Gbit/s NIDS .

Scope of the work
 The placements satisfying realistic security

requirements merits further investigation of the

technique. Experimentation and general knowledge of

intrusion detection systems have allowed identifying

numerous possible improvements to the approach and

tool support. A straightforward extension of this work

would be to incorporate an increased number of

security requirements. Sensor placement is critical to

providing effective defense. Optimal placement for

this purpose would seek to minimize damage caused

by intrusions. Placements that seek to maximize the

number of victims detected could be useful in

identifying locations best for detecting attacks likely

to have more adverse impact. Such placements could

be particularly important to detect and mitigate worm

propagation and network probes . One future work are

planning is to assign quantitative information (e.g.

level of risk) to individual nodes and provide a model

(e.g. the sensor deployment model by Shaikh [13]) to

assess the information and incorporate it into the

multiobjective optimization framework.

References
1. S. A. Shaikh, H. Chivers, P. Nobles, J. A.

Clark, and H. Chen, proposed “Optimizing

IDS Sensor placement” 2010 IEEE

International Conference on Availability,

Reliability and Security IEEE computer

society pages 315-320

2. P. Helman and G. Liepins, “Statistical

foundations of audit trail analysis for the

detection of computer misuse,” IEEE

http://www.ijesrt.com/

[Patil, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[365]

Transactions on Software Engineering, vol.

19, no. 9, pp. 886–901, 1993.

3. D. E. Goldberg, Genetic Algorithms in

Search, Optimization and Machine

Learning. Boston, MA, USA: Addison-

Wesley Longman

PublishingCo.,Inc.1989.Available:http:/port

al.acm.org/citation.cfm?id=534133

4. C. A. C. Coello and L. Nacional, “An updated

survey of gabased multiobjective

optimization techniques,” ACM Computing

Surveys, vol. 32, pp. 109–143, 1998.

5. W. Lu and I. Traore, “Detecting new forms

of network intrusion using genetic

programming,” in Proceedings of the 2003

Congress on Evolutionary Computation,

2003.

6. S. Noel and S. Jajodia, “Attack graphs for

sensor placement, alert prioritization, and

attack response,” in Cyberspace Research

Workshop, 2007.

7. M. Rolando, M. Rossi, N. Sanarico, and D.

Mandrioli, “A formal approach to sensor

placement and con.guration in a network

intrusion detection system,” in SESS ’06:

Proceedings of the 2006 international

workshop on Software engineering for secure

systems. ACM, 2006, pp. 65–71.

8. T. Issariyakul and E. Hossain, An

Introduction to Network Simulator

NS2.Springer,2008.[Online].Available:

http://www.springer.com/engineering/signal

s/book/978- 0-387-71759-3

9. S. A. Shaikh, H. Chivers, P. Nobles, J. A.

Clark, and H. Chen, “Network

reconnaissance,” Network Security,

vol.11,pp,12-16 ,2008.elsevier.

10. G. Gu, P. Fogla, D. Dagon, W. Lee, and B.

Skoric, “Measuring intrusion detection

capability: an information-theoretic

approach,” in ASIACCS ’06: Proceedings of

the 2006 ACM Symposium on

Information,computer&communications

security. ACM, March2006,pp.90-101

11. S. Luke, “A java-based evolutionary

computation research system,” 2008,

available as http://cs.gmu.edu/

eclab/projects/ecj/.

12. E. Zitzler, M. Laumanns, and L. Thiele,

“Spea2: Improving the strength pareto

evolutionary algorithm,” Swiss Federal

Institute of Technology, Tech. Rep. 103,

2001.

13. S. A. Shaikh, H. Chivers, P. Nobles, J. A.

Clark, and H. Chen, “A deployment value

model for intrusion detection sensors,” in 3rd

International Conference on Information

Security and Assurance, ser. Notes On

Computer Science, vol. 5576, 2009,

14. Design and implementation of a high

performance network intrusion prevention

system Konstantinos Xinidis1, Kostas G.

Anagnostakis2, Evangelos P. Markatos1

1Institute of Computer Science, Foundation

for Research and Technology Hellas, P.O

Box 1385 Heraklio, GR-711-10 Greece

{xinidis, markatos}@ics.forth.gr ;

2Distributed Systems Laboratory, CIS

Department, Univ. of Pennsylvania, 200 S.

33rd Street, Philadelphia, PA 19104

anagnost@dsl.cis.upenn.edu

15. Aaron Turner and Matt Bing. tcpreplay Tool.

http://tcpreplay.sourceforge.net.

16. S. Antonatos, K. G. Anagnostakis, and E. P.

Markatos. Generating realistic workloads for

intrusion detection systems. In Proceedings

of the 4th ACM SIGSOFT/SIGMETRICS

Workshop on Software and Performance

(WOSP 2004), January 2004.

17. Z. Cao, Z.Wang, and E.W. Zegura.

Performance of hashing based schemes for

internet load balancing. In Proceedings of

IEEE Infocom, pp. 323-341, 2000.

18. Y. Charitakis, K. G. Anagnostakis, and E.

Markatos. An active splitter architecture for

intrusion detection (short paper). In

Proceedings of the Tenth IEEE/ACM

Symposium on Modeling, Analysis, and

Simulation of Computer and

Telecommunications Systems (MASCOTS

2003), October 2003.

19. Y. Charitakis, D. Pnevmatikatos, E. P.

Markatos, and K. G. Anagnostakis. Code

generation for packet header intrusion

analysis on the IXP1200 network processor.

In Proceedings of the 7th International

Workshop on Software and Compilers for

Embedded Systems (SCOPES 2003),

September 2003.

20. Intel Corporation. Intel PRO/1000 MT Dual

Port Server Adapter. http://www.intel.com.

http://www.ijesrt.com/
http://www.springer.com/engineering/signals/book/978-%200-387-71759-3
http://www.springer.com/engineering/signals/book/978-%200-387-71759-3
mailto:anagnost@dsl.cis.upenn.edu
http://tcpreplay.sourceforge.net/

